SECTION 4.5: SOLVING A POLYNOMIAL FUNCTION

Homework:

Learning Targets:

- 4c. Factor polynomial functions by graphing, grouping, and quadratic techniques.
- 4d. Solve polynomial functions by graphing and factoring.

Given factors, graph the function: Graph the ______ (opposite of ______) and the

y-intercept by _____ the _____

f(x) = (x+2)(x-3)(x+5)

Multiplicity: A polynomial function has multiplicity when it has ______ factors

y = (x - 3)(x - 2)(x - 2) $y = -x(x + 5)(x + 1)^{2}$

Finding the zeros and factors from a graphing calculate	Dr: Plug the function into H	ind
the zeros (where the graph	the x-axis). Plug those zeros	
into	_, remembering to do the	

 $f(x) = x^3 - 2x^2 - 5x + 6$

_____ and set each factor equal to ______.

$$2x^4 + 4x^3 - 16x = 8x^2$$

Graph each function given the factors.

1.
$$y = 2(x+5)(x-3)(x+1)$$

2. $y = -4(x+2)(x-4)(x-4)$

3.
$$y = x(x-2)(x+1)(x-3)$$

Find the zeros by graphing in the calculator.

6.
$$f(x) = x^3 - 7x - 6$$
 7. $f(x) = -2x^3 + 6x^2 - 8$

Solve by Factoring

8.
$$x^3 + 5x^2 - 6x = 0$$

9. $x^3 + x^2 = 4x + 4$