SECTION 4.1: Graphing Polynomial Functions

Polynomial Function: a function that is a monomial or \qquad of monomials

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2} \ldots
$$

Degree: the value of the largest \qquad

Degree	0	1	2	3	4
Name	Constant	Linear	Quadratic	Cubic	Quartic
Standard Form					
Graph					

End Behavior: explains a graphs behavior at the beginning and end

$$
f(x) \rightarrow
$$

\qquad as $x \rightarrow+\infty$
$f(x) \rightarrow$ \qquad as $x \rightarrow-\infty$
1.

2.

3.

Even Function (+)	Even Function (-)	Odd Function (+)	Odd Function (-)

Describe the end behavior of the graph. Graph the polynomial function.
4. $\quad f(x)=x^{3}+x^{2}-4 x+2$
5. $g(x)=-x^{4}-x^{3}+2 x^{2}-x-3$

Maximum and Minimum:
The maximum is the \qquad turning point. The minimum is the \qquad turning point. If there are multiple maximums and/or minimums, call them \qquad max or \qquad min

$$
f(x)=x^{3}+x^{2}-4 x-4
$$

$$
f(x)=x^{4}-8 x^{2}+16
$$

$$
f(x)=x(x-4)(x+2)
$$

