# For use with pages 381–387

## Use the diagram to complete the statement.

1. 
$$\triangle ABC \sim \underline{?}$$

**2.** 
$$\frac{AB}{?} = \frac{?}{EF} = \frac{CA}{?}$$

**4.** 
$$\frac{?}{12} = \frac{8}{?}$$

**5.** 
$$x = _{?}$$

**6.** 
$$y = _{?}$$



### Determine whether the triangles are similar. If they are, write a similarity statement.

7.



8.





10.



#### Sketch the triangles using the given description. Explain whether the two triangles can be similar.

**9.** The side lengths of  $\triangle ABC$  are 8, 10 and 14. **10.** In  $\triangle ABC$ , AB = 15, BC = 24 and  $m \angle B = 38^{\circ}$ .

The side lengths of 
$$\triangle DEF$$
 are 16, 20 and 26. In  $\triangle DEF$ ,  $DE = 5$ ,  $EF = 8$  and  $m \angle E = 38^{\circ}$ .

Copyright © by McDougal Littell, a divon Mifflin Company

#### Is either $\triangle LMN$ or $\triangle RST$ similar to $\triangle ABC$ ?

1.







2.







Determine whether the two triangles are similar. If they are similar, write a similarity statement and find the scale factor of  $\triangle A$  to  $\triangle B$ .

3.



4.



#### In Exercises 15 and 16, use the following information.

Pine Tree In order to estimate the height h of a tall pine tree, a student places a mirror on the ground and stands where she can see the top of the tree, as shown. The student is 6 feet tall and stands 3 feet from the mirror which is 11 feet from the base of the tree.

**15.** What is the height h (in feet) of the pine tree?



16. Another student also wants to see the top of the tree. The other student is 5.5 feet tall. If the mirror is to remain 3 feet from the student's feet, how far from the base of the tree should the mirror be placed?